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Abstract

The decoy effect (DE), first introduced by Huber et al. (1982), has been robustly documented
across dozens of product categories and choice settings using lab experiments. However, in the
literature, the DE has never been verified in a real marketplace. In this paper, we empirically
test and quantify the DE in a major online diamond marketplace. We develop a diamond-
level proportional hazard framework by jointly modeling market-level decoy–dominant detection
probabilities and the boost in sales upon detection of dominants. Results suggest that decoy–
dominant detection probabilities are low (10%-29%) in the diamond marketplace; however, upon
detection, the DE increases dominant diamonds’ sales hazards significantly (2.3-4.4 times). To
understand the DE’s managerial significance, we quantify its profit impact and find that it
contributes 21.4% of the diamond retailer’s profit. Finally, we explore various strategies that
might help the retailer to further increase profitability. We find that the retailer’s profit can
increase up to 5.4% via effective utilization of the DE.
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1 Introduction

The decoy effect (Huber et al., 1982), also called attraction or asymmetric dominance effect, refers

to the phenomenon of consumers having different preferences for existing choice alternatives with

and without dominated (i.e., decoy) options in their choice sets. By design, these decoys are inferior

to some, but not to all, existing choice options. When such decoys exist, all else equal, dominant

options’ choice likelihoods and choice shares get greater compared to cases when the decoys are

not present. Since its introduction, the decoy effect (DE henceforth) has become one of the most

popular and frequently cited context effects in the consumer behavior literature, and it has been

thoroughly examined across dozens of product categories and choice domains using lab experiments

(see, for example, Huber et al., 1982; Huber and Puto, 1983; Wedell, 1991; Lehmann and Pan, 1994;

Royle et al., 1999).

Despite its high popularity, the DE’s practical validity has been severely challenged recently by a

series of unsuccessful replication attempts that shed light on the limits and boundaries of the effect.

Frederick et al. (2014) showed that the DE can be observed only in very stylized settings, such as

the presentation of two products with two numerically depicted attributes. Yang and Lynn (2014)

provided additional support to these findings and questioned whether the DE has any practical

significance, or if it is just an experimental artifact. The lack of documentation on the practice

of the DE in today’s marketplace was also noted by Huber et al. (2014); and this has further put

the practical validity and significance of the DE into question. In this paper, in response to these

recent studies, we provide strong empirical evidence that not only validates the DE in a real product

marketplace, but shows the managerial significance of the effect through quantifying its substantive

profitability impact.

Even though it has been more than three decades since the DE was introduced, to the best of our

knowledge there has been no empirical study similar to ours that tests and quantifies the DE with

real world practices. To empirically test and quantify the DE in a real marketplace, multiple aspects

(challenges) need to be considered (resolved). First, to study the DE in a real product market, a re-

searcher needs to calibrate decoy–dominant relationships among existing product alternatives. Since

products typically have horizontal attributes—such as brand, taste, content, package size, and even
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package design—and consumers have heterogeneous preferences among these attributes, decoys to

some consumers may not be decoys to others. Because of this, in most product markets, strict decoy–

dominant relationships may not exist, let alone permit calibration. Second, the decoy–dominant

relationships should be perceived by consumers. Unlike in lab experiments where alternatives with

only two or three attributes are presented, choice scenarios in real life are far more complex: In a

typical market, products have a much larger number of attributes, e.g., brand, size, design, color,

weight, packaging, content, taste and price, to name a few. Thus, it is much harder for consumers

to detect decoy–dominant relationships even if decoys/dominants exist, so that, as noted in Huber

et al. (1982), “the effect may be lessened.” Along this line, Simonson (2014) emphasized the im-

portance of consumers discovering or detecting decoy–dominant relationships among existing choice

alternatives in validating the DE, and called for a systematic study separating decoy–dominant

detection from the DE (i.e., sales boost in dominants upon their decoys being detected). Similarly,

Huber et al. (2014) emphasized the lack of decoy–dominant detection as one of the mitigating fac-

tors of the DE. Therefore, in real product markets, the detection of decoy–dominant relationships

becomes a critical pre-condition for the DE to have an impact on alternatives’ (namely decoys,

dominants, or neither) sales likelihoods. For this reason, the choice decision must be salient enough

and require some cognitive processing so that consumers’ preferences can be constructed rather

than revealed (Huber et al., 2014). For example, for trivial decisions, consumers may just make

their choices without paying much attention to the alternatives; consequently, they may not be

able to detect existing decoys/dominants. Similarly, for repeat-purchase products, added decoys

may not significantly impact the choices of consumers who have already developed clear preferences

towards existing alternatives over time. For example, it is hard to expect a consumer to switch to a

less preferred alternative from a long-term loyal product just because a decoy to this less preferred

option is introduced. Third, it is quite possible that decoy pricing strategies may not generate a

positive profit impact for a firm, which limits the existence of the decoy pricing practice in the real

world.1

Due to the above-mentioned challenges, to empirically test and quantify the DE, we need data
1We use the term decoy pricing to refer to the practice of introducing decoy–dominant relationships through

pricing, i.e., charging higher prices for products with the same or inferior physical characteristics.
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from a product category 1) with a reasonably small number of vertical product attributes that are

uniformly preferred by consumers; 2) that is important to consumers but not repeatedly purchased;

and 3) that has the decoy pricing practice. The online diamond marketplace is a highly appropriate

case for this purpose: Diamonds are commodity-type and unbranded products with quality clearly

defined on a few vertical attributes such as color, cut and clarity; diamond purchases are important

but not repeated lifetime decisions for consumers; and, finally, we frequently observe decoy pricing

patterns in the online diamond marketplace.

We use diamond price and sales data from a major online jewelry retailer in the U.S. to em-

pirically test the DE’s existence in the field, quantify its magnitude, and show its real significance

regarding the profitability. Modeling the impact of decoy diamonds on sales of their dominants in the

marketplace requires us to separate the market-level decoy–dominant detection from the sales boost

once diamonds are detected as dominants. This is especially important in a real market context

because, with numerous alternatives available, consumers may search and construct consideration

sets with a limited number of alternatives that have no or few decoy–dominant relationships even

though such relationships exist within a broader set of options in the marketplace. To achieve that,

we develop a diamond-level proportional hazard framework incorporating two critical components:

market-level decoy/dominant detection probability and dominant boost hazard upon dominant de-

tection. The detection probability component captures the market-level probabilities of detecting

decoys/dominants, and the dominant boost hazard component captures the boost in sales hazard

once a diamond is detected as a dominant. Thus, in our setting, upon the dominant detection, the

dominant boost hazard component serves as the test of the existence of the DE.

In the estimation, we use a diamond’s characteristics and price, daily demand fluctuations, and

competition from other similar diamonds to control for the differences in the daily sale hazards

among diamonds. To capture potential consumer heterogeneity in response to decoy pricing, we

classify the diamonds into three segments based on price (low: $2K-$5K; medium: $5K-$10K; and

high: $10K-$20K) and estimate separate parameters for detection probability and dominant boost

hazard. Results on daily sales hazard suggest that it is relatively easier to sell diamonds with

smaller carats and moderate price, cut, color and clarity levels. Results also help us quantify how
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the relevant decoy–dominant structure impacts the detection probability and dominant boost haz-

ard. The market-level detection probability for a decoy (or dominant) diamond is, in general, quite

low, ranging from 10% to 29% based on the diamond’s price segment. The low decoy–dominant

detection probabilities show that it is a requirement to explicitly model the decoy–dominant detec-

tion probabilities in the online marketplace when quantifying the DE. As opposed to low detection

probabilities, we find a significant sales boost for dominant diamonds: Conditional on detection,

the sales hazard becomes 2.3 to 4.4 times larger for a dominant diamond. This finding offers strong

real-life evidence of the practical validity of the DE in response to recent studies questioning this

aspect, including Frederick et al. (2014) and Yang and Lynn (2014). Across the three segments, the

low price segment has the highest detection probability but lowest dominant boost effect, while the

high price segment demonstrates the opposite.

We further quantify the profit impact of the DE, i.e., the managerial significance of the DE. The

direct measurement of the DE in terms of profit comes from our model estimates of the dominant

boost hazard component. We compare differences in the expected profits when we turn the dominant

boost parameters on and off. Overall, we find that the DE contributes 21.4% of the retailer’s gross

profit; and the profit contribution is quite even across different diamond price segments. This

finding shows that the DE is not only real but quite substantive managerially. Finally, through

our policy studies, we investigate how decoys and dominants can be used/priced in more effective

ways to further increase the retailer’s gross profit. We manipulate three strategies the retailer can

implement: 1) changing the number of listed decoys/dominants (called as frequency strategy); 2)

changing the price dispersion for diamonds with the same attributes (called as range strategy); and

3) changing the baseline decoy–dominant detection probabilities (called as awareness strategy). Our

simulation studies indicate that the retailer could gain additional profits from all three strategies.

The potential gain is the largest from the awareness strategy: At the optimal consumer-awareness

levels, the retailer might acquire an additional 5.4% gross profit compared to the current setting.

Our study contributes to the literature on the DE by empirically separating the market-level

decoy–dominant detection from the DE boost of decoys on dominants. More importantly, for the

first time in the literature, we 1) validate the existence of the DE in a real marketplace; 2) quantify

5



its magnitude across different segments; and 3) show its substantive profit impact. This paper thus

attenuates the recent concerns (Frederick et al., 2014; Yang and Lynn, 2014) about the practical

validity of this classical context effect beyond traditional lab settings. Finally, through our policy

studies, we advise the retailer how to acquire higher profits from the DE via easy-to-implement

strategies.

2 Literature Review

This paper contributes to two streams of literature: the general consumer behavior literature on con-

text dependent choices (in particular, the decoy effect) and the empirical consumer choice modeling

literature in marketing and economics.

Standard rational choice models in economics and marketing are built upon the revealed prefer-

ence assumption, which implicitly assumes two principles: the principle of regularity (Luce, 1977)

and the principle of independence of irrelevant alternatives (IIA)(Luce, 1959). In contrast, con-

sumer behavior researchers adopted the notion of constructed preference (Bettman et al., 1998) and

extensively documented context effects in consumer choices (Tversky, 1972; Simonson, 1989). The

DE (Huber et al., 1982), which is a classic example of such context effects, violates both IIA and

regularity principles. The DE has been examined across dozens of product categories and choice

domains (see, for example, Huber et al., 1982; Huber and Puto, 1983; Wedell, 1991; Lehmann and

Pan, 1994; Royle et al., 1999). Further, the literature features investigations of cognitive processes

and mechanisms underlying as well as moderating the DE and related context effects (see, for exam-

ple, Ratneshwar et al., 1987; Heath et al., 1995; Müller et al., 2014; Guo and Wang, 2016). In this

domain, Khan et al. (2011) studied the influence of how choice construal on context effects, finding

that high construal as opposed to low increases the size of the DE. In a recent paper, Morewedge

et al. (2018) demonstrated that when comparisons of alternatives for choice makers require social

comparisons, the context effects get stronger. Guo and Wang (2016) studied underlying causes of

context effects. Specifically, they found that the response time can mediate the compromise effect

but the context information can not. Although the DE was introduced more than three decades

ago, empirical testing and quantification of the effect in a real marketplace has not been achieved
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yet. Our paper fills this important gap in the literature by validating the DE in the field.

The limits and boundaries of the DE have been debated by multiple studies.Frederick et al. (2014)

stated that the DE can only be observed in very stylized lab settings with 2×2 numerical depictions

of the products (two products with two attributes, with a decoy to one product added to the choice

set later). Through 38 replication attempts, their study showed that when the product attributes

are depicted with perceptual representations and verbal descriptions (rather than numerical), the

DE weakens, dies, or gives way to the repulsion effect (i.e., the decoy option decreases the share

of the dominant option). Through 91 replication attempts,Yang and Lynn (2014) also showed that

replicating the DE is very difficult with verbal and pictorial depictions of product attributes. They

went further and questioned the usefulness of marketing academics by accusing the studies of placing

insufficient emphasis on the practical significance of the examined behavioral concepts. With the

current research, we respond to concerns of Frederick et al. (2014) and Yang and Lynn (2014) by

providing strong empirical evidence of the existence of the DE in a real product marketplace.

Simonson (2014) underlined the importance of recognizing the set formation, i.e., subjects being

aware of decoy–dominant relationships, in being able to replicate the DE. He argued that consumers’

choices require them to make multiple trade-off contrasts simultaneously. As a result, consumers

may not discover or make their decisions based on existing decoy–dominant configurations, especially

if such configurations are difficult to detect. Further, Simonson (2014) called for a systematic study

on the drivers of decoy–dominant detection. Huber et al. (2014) recognized the lack of practice of the

DE in today’s marketplace, noting that it is very difficult to observe the DE in a real market place

since detection of decoys is typically very hard for consumers due to numerous alternatives with

many attributes. With this research, we respond to the call that Simonson (2014) made by explicitly

modeling decoy–dominant detection in the studied online diamond marketplace to empirically test

and quantify the DE’s magnitude.

Our study is closely related to the studies modeling consumer choice in the economics and

marketing literature. Classic multinomial logit and probit models are built upon the revealed

preference assumption, thus they cannot directly account for context effects. Given the extensive

documentation on the prevalence of context effects in the behavioral literature, a few empirical
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and analytical methods have been developed to incorporate these context effects into the choice

models. Tversky (1972) formulated his well-recognized Elimination-By-Aspects (EBA) model to

account for the similarity effect. Kamakura and Srivastava (1984) modified the standard multinomial

probit model in order to account for the similarity effect by modifying the error structure through

incorporating similarity-based error correlations. Kivetz et al. (2004) proposed a choice model that

can account for the compromise effect. Orhun (2009) developed an analytical choice model to

study the DE and compromise effects under the loss-aversion assumption. Rooderkerk et al. (2011)

proposed an empirical choice model that can incorporate decoy, compromise and similarity effects

all together. They used choice-based conjoint data to estimate their proposed model and showed

that ignoring context effects significantly biases the choice model’s predictions. Our paper adopts a

different approach by developing a proportional hazard model framework that explicitly accounts for

the DE by using data from a real product marketplace. Our proposed framework allows researchers

to quantify the DE even without the consumer-level search data by using the aggregate product

sales data.

In the following sections, we first describe the online diamond marketplace, our dataset, and how

we calibrate the decoy–dominant relationships. Second, we provide data evidence on the existence

of the DE in this online diamond marketplace. Third, we discuss our model framework. Fourth, we

present our estimation results. Fifth, we discuss the DE’s managerial implications. We conclude

with a discussion of the current study’s potential limitations and directions for future research.

3 Data

3.1 Online Diamond Marketplace

Several U.S. retailers emerged in the online market for diamonds and fine jewelry products in the

past two decades. We use a panel data set from one major retailer in this market. The retailer

sells a variety of jewelry products to end consumers such as unbranded loose diamonds, gemstones,

wedding rings2, bracelets, necklaces, and earrings. Loose diamonds account for the core part of
2Buying a diamond ring from the retailer requires a consumer to choose his/her loose diamond first and then a

ring setting. The retailer provides a limited number of standard ring settings. Consumers pay the total price and
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the retailer’s business in terms of revenue contribution. According to its annual report, the retailer

works with dozens of diamond suppliers worldwide under an “exclusivity” agreement, which requires

suppliers to sell their diamonds only through the retailer’s online channel, and not through their own

or other competing online and offline channels. For listed diamonds, the identities of the suppliers

are not revealed on the retailer’s website so that consumers cannot differentiate diamonds based on

the suppliers. Instead, consumers recognize only the retailer name as the diamond brand.

To operate in a cost-efficient manner, the retailer uses a drop-shipping business model, i.e., the

retailer, in most cases, does not physically carry inventories of loose diamonds listed on its website,

instead purchasing diamonds from corresponding suppliers when consumers place their orders from

the retailer. Unlike traditional brick-and-mortar stores, where only a limited number of diamonds

are available, this drop-shipping model allows the retailer to list tens of thousands of diamonds

every day. The retailer’s website is designed to allow potential buyers to effectively search loose

diamonds based on their physical characteristics such as carat, clarity, color, cut (4Cs henceforth),

and price. After such a search, a consumer’s consideration set typically contains multiple decoy

diamonds, i.e., diamonds with the same 4Cs (the same grade henceforth) or even inferior 4Cs, but

with higher prices than their counterparts (dominants henceforth). As stated earlier, we call this

frequently observed pricing behavior the decoy pricing strategy.

In this setting, suppliers list their diamonds on the retailer’s website and establish the wholesale

prices. The retailer then adds a fixed percentage markup to the wholesale prices. As per the retailer’s

annual report, the markup is fixed at around 18-20% for all diamonds. Thus, the decoy pricing

structure actually comes from the suppliers instead of the retailer strategically manipulating it.3

Nevertheless, consumers are expected to respond to an existing decoy–dominant structure regardless

of whether it is created by the retailer or suppliers.That being the case, as we demonstrate later, the

decoy–dominant structure still affects the retailer’s diamond sales and ultimately its profitability

the diamond ring is then assembled by the retailer. Typically, the loose diamond accounts for more than 90% of the
total price paid by consumers.

3We note that the supplier price variation may exist due to multiple reasons. First, since there are consumer search
costs, the observed prices can be the outcome of a mixed-strategy price equilibrium on the supplier side. Second,
suppliers might have different costs, resulting in different pricing functions. Third, suppliers may change prices at
different times. Understanding the source of the price variation is beyond the scope of the current study. Instead,
we focus on quantifying the DE given the existing decoy–dominant structure in the marketplace, i.e., we take the
existing price variations as given and model the demand-side responses to such variations by incorporating the DE.
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Figure 1: Diamond Price Patterns Over Time

to a large extent. Furthermore, strategic pricing on top of suppliers’ wholesale prices remains an

option for the retailer. We explore this possibility in our policy analysis to demonstrate how the

retailer can further profit from the DE.

3.2 Data Description

We construct a panel data set of diamond prices and sales from this online retailer. We collect

our daily data from the retailer’s website through a web crawler for the period from February 2011

to September 2011. For each diamond listed during our sample period, we observe the diamond’s

inherent physical characteristics (its 4Cs and some other attributes such as symmetry and polish)

and daily prices until the diamond is sold. In the data, diamond prices typically change overtime:

On average, each diamond’s price changes once every 21 days, conditional upon it being unsold.

Figure 1 provides an example of price dynamics among three 1.0 carat diamonds from the day of

introduction in the market till each is sold. As shown in the figure, the diamond price can go

up-and-down, and each diamond may have its unique price patterns over time. We infer that a

diamond is sold through the retailer’s website on the last day it is listed as available, based on the

unique SKU number. We believe this is a reasonable approach because, as discussed earlier, the

suppliers are under an exclusive channel agreement with the retailer so that the diamond sale would

not have happened through other channels. On average, it takes about 50 days to sell a diamond

on the online platform.
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In our analysis, we focus specifically on round-shaped diamonds with prices ranging between

$2K and $20K. These diamonds are the most popular ones among those listed and sold.4 Diamonds

in different price ranges might be more attractive to different segments of potential buyers with

different budgetary constraints. To account for some of the potential heterogeneity in the DE

across different consumer segments, we further divide the diamonds into low- ($2K-$5K), medium-

($5K-$10K) and high-price ($10K-$20K) segments based on their first-day market prices.

Before calibrating the decoy–dominant structure, we first examine what determines diamond

prices. For this purpose, we run an ordinary least squares regression with (log- of) daily diamond

prices as our dependent variable and the diamonds’ physical characteristics as independent variables

to uncover the secret diamond-pricing formula. To control for potential demand variations across

different days, we also add day fixed effects to the regression model. We report the regression

results in Table 1. The adjusted R-squared for the model with 4Cs, along with day fixed effects, is

as high as 96.67%. Individual regressions for each day result in adjusted R-squared from 94.92% to

96.57%. The results provide strong evidence that the 4Cs are the predominant factors in determining

diamond prices.

To further check the robustness, we ran several regressions by incorporating other diamond

attributes, such as symmetry and polish, into our main regression model. Overall, the R-squared

measure does not improve. Moreover, the effects of these additional variables on prices are mostly

insignificant, and their estimates are notably smaller in magnitude compared to the estimates of

the 4Cs. For example, the implied price difference contributed by symmetry and polish turns out

to be less than 0.5%. Thus, we have strong supporting figures to conclude that the quality of a

diamond can be measured very precisely by simply looking at its 4Cs. In other words, a diamond

can be characterized as a combination of five characteristics: 4Cs and price. This is, indeed, quite

consistent with industry reports on diamond valuations and with articles educating consumers on

purchasing diamonds. Even though the variation in diamonds’ physical attributes explains a large

portion of the price variation, we still observe significant within-grade (same 4Cs) and within-day
4Diamond shape can be considered as a horizontal attribute. Thus, including only round-shaped diamonds would

not affect our decoy–dominant constructions, i.e., no decoy–dominant relationships exist across diamond shapes.
Further, in the data, the prominent diamond shape is round, accounting for 74% of listing and 78% of sales. Last
but not least, when buying a diamond, most consumers commit to a particular shape before choosing among other
attributes.
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price variation5. This variation is essential to characterize the dyadic decoy–dominant relationships

among every diamond-pair, as discussed next.

Table 1: Price Regression: ln(price) on 4Cs and day fixed effects

Variable Estimate Std. Err.

Carat 1.768 0.0004

Poor 0.000
Good 0.056** 0.0009

Cut Very Good 0.114** 0.0009
Ideal 0.180** 0.0009
Signature Ideal 0.231** 0.0013

J 0.000
I 0.141** 0.0004
H 0.268** 0.0004

Color (Low to High) G 0.361** 0.0003
F 0.455** 0.0003
E 0.503** 0.0004
D 0.583** 0.0004

SI2 0.000
SI1 0.124** 0.0003
VS2 0.274** 0.0003
VS1 0.371** 0.0003

Clarity (Low to High) VVS2 0.455** 0.0003
VVS1 0.544** 0.0003
IF 0.619** 0.0004
FL 0.762** 0.0004

Daily Dummies included

Adj. R-squared 96.67%
Adj. R-squared w/o daily dummies 95.27%
Adj. R-squared w/ daily separate regressions 94.92%–96.57%

Note: Estimates with ∗∗ are significant at the 0.05 level.

3.3 Dominance Construction

By definition, a diamond B is a decoy to another diamond A when B is inferior to A in at least

one attribute, but has no superior attribute. In our specific setting, we define a diamond as a decoy

under two conditions: 1) In terms of 4Cs, B is inferior in at least one attribute to A and has no

attribute superior to A but has the same or a higher price than A; and 2) B has the same 4Cs as
5To illustrate the amount of within-grade and within-day price variation, we calculate the ratios of price standard

deviation to mean price at each day-grade combination. The average (over grades and days) of these ratios turns out
to be 0.1, indicating a sufficiently large within-grade and within-day price variation.
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A, but is priced higher6. Under these two definitions, for any two diamonds on a particular day, we

define the relationship between them as follows: A dominates B (A � B), B dominates A (B � A),

and no dominance (A ∼ B). Notice that, under the strict definition, two diamonds with the same

attributes but different prices must have a strict dominance relationship. However, in real purchase

situations, consumers may not care much about (or even notice) the difference if the price gap is

not large enough. Thus, we use a conservative approach in our analysis: We define a dominance

relationship for two diamonds with the same 4Cs only if the price difference between the two is

larger than 5%.7 Our conservative 5% rule also helps us avoid the potential problem of defining a

false dominance relationship when the dominated diamond is, indeed, superior in other non-critical

attributes such as symmetry and polish. As mentioned before, in a full regression model (with

polish and symmetry), the price premium contributed by each of these attributes is smaller than

0.5%. Thus, we believe the 5% rule for two diamonds with the same 4Cs is conservative enough.

In our data sample, every pairwise decoy–dominant relationship between all listed diamonds is

constructed for each day (due to within diamond price variation over time). For a particular diamond

j, for each day t, we calculate the number of diamonds that are decoys (NDecoy
jt ) and dominants

(NDominant
jt ) to that diamond. The median number of decoys and dominants that a diamond has

is 7 in the data sample, while the distribution is right skewed. 86% of the decoys/dominants are

defined based on the first part of our definition in which diamonds differ in at least one of the 4Cs.

As NDecoy
jt gets larger, we expect that it gets easier for consumers to discover diamond j and its

decoys at the same time, resulting in an increase in the size of the consumer segment detecting

it as a dominant. Furthermore, when diamond j is detected as a dominant to more decoys, it

would become more attractive, i.e., the sales hazard is expected to increase more. With similar

reasoning, as NDominant
jt gets larger, the size of the consumer segment detecting diamond j as a

decoy is expected to grow. As a result, the sales hazard for diamond j will decrease given that

consumers would not purchase it once they detect it as a decoy. Thus, NDecoy
jt and NDominant

jt are

6We do not consider the condition in which B is superior in 4Cs, but the high price premium compared to diamond
A does not justify the difference in superior attributes (i.e., the near-dominance relationship as discussed in Huber
et al. (1982)). There are two reasons for this. First, this is not a strict definition of decoy. Second, and more
importantly, it might be significantly more difficult for consumers to detect such decoy–dominant relationships since
diamonds are not directly comparable.

7If two diamonds have different 4Cs and have a dominance relationship, we use the strict definition, i.e., the
inferior diamond with the same or higher price is labeled as a decoy. For diamonds with same 4Cs, we also conducted
our analysis under the 1% and 10% rules, and the results turned out to be qualitatively very similar to the 5% rule.

13



the two key measures in our model.

Under our dominance definition, a diamond j can belong to one of the four mutually exclusive

groups on day t: 1) neither decoy nor dominant: NDecoy
jt = 0 and NDominant

jt = 0; 2) decoy only :

NDecoy
jt = 0 and NDominant

jt > 0; 3) dominant only: NDecoy
jt >0 and NDominant

jt =0; and 4) both decoy

and dominant: NDecoy
jt > 0 and NDominant

jt > 0. The middle column of Table 2 shows the count

of diamond-day observations for each type. Due to the significant within-grade price variations, we

observe that a majority of the diamonds fall into the both decoy and dominant type. However, even

in the smallest group, i.e., neither decoy nor dominant, we have a sufficient number of observations

(27,077) to allow the identification of our model, as we discuss later.

Table 2: Summary Statistics Across Diamond Types
Diamond Type Diamond-Day Observations Daily Percentage Sales

Neither decoy nor dominant 27,077 1.96%
Decoy only 404,283 1.68%
Dominant only 340,456 2.53%
Both decoy and dominant 1,945,009 2.08%
Total 2,716,825 2.07%

3.4 Data Evidence of the DE

In this subsection, we discuss some observed data patterns that are suggestive of the DE. First, we

provide statistics on how the likelihood of a diamond’s sale is affected by which of the four dominance

types the diamond belongs to. The last column of Table 2 summarizes the percentage of diamonds

sold in the total diamond-day observations across different diamond types. Each cell is calculated as

follows: For example, there are in total 404,283 diamond-day observations for decoy only diamonds,

out of which 6,792 were sold. Therefore, the average sale probability in this cell becomes 1.68%.

Table 2 shows that decoy only diamonds have the lowest average sale probabilities (1.68%), while

the opposite is true for dominant only diamonds (2.53%). The pattern is consistent across the

three diamond price segments. Qualitatively, such patterns could be explained by consumer search

processes: A decoy only diamond is less likely to sell compared to a neither decoy nor dominant

type since there exists a segment of consumers in the market who are able to detect this diamond as

a decoy and therefore would not purchase it. Yet the sale probability is not zero because consumers

have search costs and there exists another segment that fails to detect this diamond as a decoy and
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may end up purchasing it. Thus, the significant difference in sales probabilities between decoy only

and neither decoy nor dominant type diamonds highlights the importance of controlling for market-

level decoy detection in the model. Under random consumer search, dominant only diamonds should

have similar probabilities of being included in consumers’ consideration sets as do the diamonds in

the neither decoy nor dominant type, and slightly greater sale probabilities because of their relative

quality and/or price advantages. The fact that they have on average a significant 29% larger sale

probability (2.53% vs. 1.96%) could be suggestive of effects beyond consumer search only. If it is

solely search-effect, the retailer could acquire a significant profit gain by slightly decreasing prices of

diamonds in the neither decoy nor dominant type to make them dominant only, thereby increasing

their demand by 29%. Thus, we attribute this 29% demand boost to the potential DE: Once

dominants are detected by some consumers in the marketplace, their purchase probabilities increase

significantly.

Second, we develop a formal statistical method to test whether the existing price dispersion can

be solely explained by consumer search. We show the details of this test in Web Appendix A. The

intuition is that under pure consumer search without the DE, a supplier sets prices to maximize

the expected profit of each individual diamond, and thus identical diamonds with different prices

are expected to generate the same level of profit for the supplier in equilibrium (Burdett and Judd,

1983). However, if there is DE together with consumer search, a supplier needs to consider the price

optimization beyond each individual diamond because decoys would serve as loss-leaders that help

generate higher expected profits from their dominants. Consequently, one would expect the profit

contribution of dominants to be higher than that of decoys.

Under the hypothesis of no DE (i.e., there is only search effect), we can utilize the observed price

and sales information to recover the cost of each diamond j on day t (cjt) from the corresponding

supply-side pricing optimality conditions. Recovered costs should be approximately the same for

diamonds with identical 4Cs, and should be exactly the same for the same diamond over time.

However, if there exists DE along with consumer search — since the demand for higher-priced

decoys is more price elastic — recovered costs will increase with their relative price levels8. Test

of the pure search effect versus additional DE thus becomes the same as testing whether recovered
8On day t, we define the relative price of diamond j (i.e., rpjt) as the percentage price difference between the price

of diamond j and the average price of all diamonds that belong to diamond j’s grade (i.e., same 4Cs).
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costs are increasing with relative prices. We conduct two statistical tests: 1) using cross-diamond

price variations (labeled as Test I); and 2) using within-diamond price variations over time (labeled

as Test II). Results are provided in Table A1 in Web Appendix A. Results consistently reject the

null hypothesis of a pure consumer search explanation across all three diamond price segments. All

the estimated coefficients of relative price levels (rpjt) are positive and significant, and thus are

directionally consistent with the hypothesis supporting the existence of DE together with consumer

search in the observed data. Further, the coefficient estimates are larger in the higher price segments,

suggesting that the potential DE would be stronger for more expensive diamonds.

Third, we investigate how the overall dominance structure might impact the extent to which

consumer search and the DE affect diamond sales likelihoods. We run two linear regression models

to check these relationships. In the results reported in Table 3, we use the daily percentage sales

share of decoys (dominants) as the dependent variable of the first (second) regression model. We use

price-segment dummies and percentage of decoy only and dominant only diamonds as independent

variables in both regression models. Results show that the percentage of decoy only diamonds

significantly increases the decoy’ sales share; while the percentage of dominant only diamonds

significantly increases the dominants’ sales share but decreases the decoy’ sales share. Specifically,

as the share of the decoy (dominant) only diamonds increases by 10%, the predicted share of decoys

(dominants) from the overall sales increases by 9% (19.7%). The decoy sales share regression is

consistent with the consumer search story: Having relatively more decoy only diamonds compared

to dominants would reduce the likelihood of consumers discovering these decoys along with their

dominants. In other words, as there are more decoy only diamonds, the size of the market segment

detecting these diamonds as decoys decreases, i.e., their sales probability increases. Regarding

the dominant sales share regression, the elasticity of percentage of dominants on sales share is

significantly larger than 1 (1.97), suggesting that including additional dominant only diamonds

would extract a disproportionally larger sales share from other diamonds, which is strong supporting

evidence of the DE.
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Table 3: Diamond Sales Share Regression

Variable Decoy Sales Share Dominant Sales Share

Estimate Std. Err. Estimate Std. Err.

Intercept 0.023 0.026 −0.048 0.040
Medium Segment(5K-10K) 0.006 0.016 −0.082∗∗ 0.025
High Segment(10K-20K) −0.008 0.021 −0.086∗∗ 0.032
% Decoys 0.899∗∗ 0.198 0.161 0.301
% Dominants −0.312∗∗ 0.155 1.972∗∗ 0.236

Adj. R-squared 0.118 0.117

Note: Estimates with ∗∗ are significant at the 0.05 level.

To sum up, our simple data analyses yield the following results: 1) Diamond prices can be

characterized by 4Cs with high precision; 2) there is still sufficient price dispersion for diamonds

with identical physical attributes; 3) the likelihood of a diamond purchase depends on whether it is

a decoy and/or a dominant; and 4) there is suggestive evidence of the DE beyond consumer search

in the online diamond marketplace. Therefore, a careful investigation of the decoy phenomenon

through a deliberately developed empirical model is required. We achieve this in the next section.

4 Model

4.1 A Proportional Hazard Model of Diamond Sales Embedding the DE

We develop a diamond-level proportional hazard framework to model the daily sale likelihoods of

diamonds. In general, a specific diamond’s daily sale likelihood could be determined by a few factors:

1) its physical attributes and price; 2) time-variant diamond needs of consumers; and 3) competition

from other comparable diamonds to this focal diamond. We utilize these three sets of information

in the daily-diamond sale hazard component of our proportional hazard framework. However, since

decoy pricing is widely observed in our market setting, and such pricing can potentially affect the

diamond sales, we must also incorporate the DE into our hazard specification. As discussed earlier,

due to the existence of large numbers of decoys/dominants, a focal diamond’s demand should depend

on: 4) the size of the market segment that is able to detect whether the diamond is a decoy and/or

dominant; and if the diamond is a dominant, 5) the level of the demand boost upon the diamond’s

detection as as a dominant. We capture these two components, i.e., market-level decoy–dominant

detection and dominant boost hazard, in the decoy–dominant hazard component of our proportional

17



hazard framework.

Separating the market-level decoy–dominant detection and the boost in sales upon dominant

detection is a challenging task since we do not observe any individual consumer level behaviors. To

achieve our objective, we derive our diamond-level proportional hazard model from fundamental

consumer-level primitives including the consumer arrival process, product search, consideration set

formation, and conditional choice probabilities with the embedded DE. Please see Web Appendix B

for the details of this derivation, along with how we embed the DE in consumers’ conditional choice

probabilities and how our proposed specification serves as a test for the DE at the aggregate level.

Based on the derivation in Web Appendix B, we use the following to denote the hazard that

diamond j will be sold at day t:

hj(t) = ψj(Xj , pjt, Zt,Wjt|θ)φj(Njt, rpjt|γ), (1)

where ψj(.) is the daily-diamond sale hazard and φj(.) is the decoy–dominant hazard, i.e., the key

component of our model. Table 4 provides the definitions of the variables used. We model the

daily-diamond sale hazard ψj(.) as an exponential function of 1) diamond j’s characteristics: its

price segment–dummy coded low-, medium-, or high-price; physical attributes—dummy coded 4Cs

(Xj); and, price and price square (pjt, p
2
jt); 2) daily demand proxies capturing the daily diamond

needs of consumers in the marketplace–Google search trends and weekday dummies (Zt); and 3)

competition from comparable diamonds–number of diamonds with the same and in the surrounding

4Cs (Wjt). Specifically, with θ = {α0, αZ , αX , αW , β1, β2}, we have

ψj(Xj , pjt, Zt,Wjt|θ) = exp(α0 + ZtαZ +XjαX +WjtαW + pjtβ1 + p2jtβ2). (2)

We define a grade as a unique combination of 4Cs and use pjt to represent the average price

for all diamonds for the grade that diamond j belongs to. We denote rpjt as the relative price

of diamond j compared to prices of other diamonds in diamond j’s grade. The relative price

measurement rpjt is defined as rpjt = (pjt − pjt)/pjt. As seen in Equation (1), we model the

decoy–dominant hazard φj(.) as a function of 1) number of decoys and dominants diamond j has

(Njt = [NDecoy
jt , NDominant

jt ]), and 2) the relative price measurement rpjt . The variables we choose
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to model the decoy–dominant hazard are consistent with the work of Huber et al. (1982) that

examines two factors impacting the salience of the DE: 1) the frequency effect, which measures

the number of attributes that the dominant alternative is dominating; and 2) the range effect,

which measures the degree of dominance within an attribute. In our context, because the model is

built upon the sales hazard of each diamond, we do not directly measure the number of attributes

that form strict dominance relationships. Instead, we aggregate the number of alternatives that a

diamond is dominating/dominated by (NDecoy
jt and NDominant

jt ). Therefore, this first measurement

could be viewed as a proxy to the frequency effect. The relative price measure (rpjt), on the other

hand, can be viewed as a close proxy for the range effect.

Table 4: List of Variables Used in Model Estimation
Variable Name Description

Zt Google search Daily Google search trends index of diamond-related keywords
Weekday dummies Dummy variables of weekdays

Xj Diamond characteristics Dummy coded 4Cs of each diamond
Wjt Daily competitiveness Log of number of diamonds of the same grade, and of the neighbor-

ing grades, Residual from the price regression, % of price change
from last period

pjt Daily price Daily prices of each diamond (in 1000)
rpjt Relative price index Price of each diamond relative to the average price with same 4Cs
Njt Decoys Number of diamonds that are dominated by diamond j

Dominants Number of diamonds dominating diamond j

Central to our empirical test is the modeling of the decoy–dominant hazard component φj(.),

in which we incorporate two critical elements: 1) the market-level decoy and dominant detection

probabilities as denoted by PrDecoyjt (.) and PrDominantjt (.), respectively; and 2) the dominant boost

hazard upon dominant detection, denoted as QDjt(.). We model market-level decoy and dominant

detection probabilities as follows:

PrDominantjt (Njt, rpjt) = I(NDecoy
jt > 0)

exp(V Dominant
jt )

1 + exp(V Dominant
jt )

PrDecoyjt (Njt, rpjt) = I(NDominant
jt > 0)

exp(V Decoy
jt )

1 + exp(V Decoy
jt )

, (3)
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where I(.) is the indicator function and V Dominant
jt and V Decoy

jt are specified as:

V Dominant
jt = γDominant0 + γDominant1 ln(NDecoy

jt ) + γDominant2 I(rpjt < 0)(−rpjt)

V Decoy
jt = γDecoy0 + γDecoy1 ln(NDominant

jt ) + γDecoy2 I(rpjt < 0)(rpjt)

. (4)

The intercept terms (γDominant0 and γDecoy0 ) are modeled at each of the diamond price segments

since decoy–dominant detection probabilities defined in Equation (3) might differ across various

market segments with different consumer budgetary levels. The other γ s capture how both the

number of decoys/dominants and the relative price would impact the likelihood of decoy–dominant

detection probabilities.

Next, we define the dominant boost hazard QDjt(.) as the following:

QDjt(Njt, rpjt) = exp
[
γBoost0 + γBoost1 ln(NDecoy

jt ) + γBoost2 I(rpjt < 0)(−rpjt)
]
. (5)

Similarly, we model the intercept term (γBoost0 ) at each of the diamond price segment since the

dominant boost effects might differ across market segments. γBoost1 captures the frequency on the

DE and γBoost2 captures the range effect of the DE.

Given market-level detection probabilities and dominant boost hazard definitions, we opera-

tionalize the decoy–dominant hazard as follows:

φj(.) =



1, if j is Neither

(1− PrDecoyjt ), if j is Decoy Only

(1− PrDominantjt ) + PrDominantjt QDjt, if j is Dominant Only

(1− PrDecoyjt )(1− PrDominantjt ) + (1− PrDecoyjt )PrDominantjt QDjt, if j is Both

.

(6)

Before discussing Equation (6) in detail, we would like to note that we make an implicit as-

sumption in the derivation of the decoy–dominant hazard such that once consumers detect a specific

diamond to be a decoy, they would never purchase it, as they can always choose the dominant one.

This assumption is consistent with the existing literature. For example, Huber et al. (1982) verified
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that fully-informed subjects would seldom make “mistakes” of choosing decoys in lab experiments.

Equation (6) shows how the decoy–dominant hazard depends on diamond j’s type: If the dia-

mond is neither decoy nor dominant type, the DE has no impact on the sale hazard of the diamond,

i.e., the proportional decoy–dominant hazard is normalized to one. If the diamond is decoy only type,

it is considered only by the consumer segment that fails to detect it as a decoy under our assumption.

Further, the DE does not play a role in the sale hazard of the diamond given no detection, resulting

in the overall decoy–dominant hazard being the size of this segment, i.e., φj(.) = 1−PrDecoyjt (.). For

a diamond belonging to the dominant only type, there exist two market segments: the segment that

fails to detect the diamond as a dominant, and the segment that is able to detect it. The DE does

not have any impact on the former segment (i.e., QDjt(.) = 1), while we expect there is a demand

boost effect (i.e., QDjt(.) > 1) for the latter. The overall sale hazard thus becomes the expression in

the third line of Equation (6). Finally, if the diamond is both decoy and dominant type, the diamond

is only considered for purchase by the market segment that fails to detect it as a decoy, with the

size of the segment being 1 − PrDecoyjt (.). Similar to the decoy only case, the remaining consumer

segment will never purchase it, i.e., QDjt(.) = 0. Within the segment that fails to detect the diamond

as a decoy, we can further divide them into two sub-segments: the sub-segment that fails to detect

the diamond as a dominant and the one that detects it. Similar to the dominant only case, the

former sub-segment with size 1− PrDominantjt (.) will not be impacted by DE, i.e., QDjt(.) = 1, while

sale hazard from the other sub-segment will be boosted by QDjt(.) > 1. Combining all the scenarios,

we have the derivation as shown in the last line of the above equation.

Denote the total number of days since diamond j is on market to the end of our observation

period as Tj , and the day diamond j is sold since its introduction as T sj . Given J diamonds in the

data set, the total likelihood we use for estimation becomes the following:

L = ΠJ
j=1

{[
I(T sj ≤ Tj)(1− e

−hj(T s
j ))Π

T s
j −1
t=1 e−hj(t)

]
×
[
I(T sj > Tj)Π

Tj
t=1e

−hj(t)
]}

. (7)

We now discuss a few properties of our model. First, the unit of our analysis is each diamond,

which is different from classic choice models defined by brand or product shares. Second, in terms of

how to model the DE conditional on dominant detection, we choose to use a scalar function QDjt(.).

When QDjt(.) > 1, our specification becomes consistent with the DE theory, i.e., upon detection,
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there is a sales boost for dominant diamonds. In other words, under our framework, testing the

existence of the DE becomes the same as testing whether QDjt(.) > 1. Details of this test are provided

in Web Appendix B. Third, it is quite possible that consumers are heterogeneous, so we allow our

daily-diamond hazard ψj(.) and the decoy–dominant hazard φj(.) to differ across different diamond

price segments to capture such consumer heterogeneity.

4.2 Model Identification

We now discuss the intuition of our identification strategy. For illustrative purposes, let us think

about the simpler case where each diamond’s attributes (i.e., the type, prices, number of decoys,

and dominants over time) do not change over days. Our identification strategy relies on the fact

that it takes different number of days to sell different types of diamonds (neither decoy nor domi-

nant, decoy only, dominant only, or both decoy and dominant). First, based on our normalization

in Equation (6), the sales hazard for neither type is the baseline daily-diamond sale hazard. Thus,

we use the variation of the time it takes to sell this type of diamonds with different price segments,

4Cs, price, and under different daily demand proxies and competition characteristics (i.e., with dif-

ferent Xj , pjt, Zt and Wjt) to identify the parameters in the daily-diamond hazard component (i.e.,

θ). Second, conditional on the identification of parameters in the daily-diamond sale hazard, we

identify the parameters related to the detection probabilities and dominant boost hazards. Since

decoy diamonds could only be purchased by the market segment that fails to detect them as de-

coys (see the second line of Equation (6)), we use the variation of time it takes to sell decoy only

diamonds with different numbers of dominants, NDominant
jt , and relative prices, rpjt, to identify

the parameters of the market-level decoy detection probabilities (i.e., the parameters in the second

line of Equation (4)-γDecoy). Third, as seen in the third and fourth lines of Equation (6), it is not

possible to separately identify the parameters of the market-level dominant detection probabilities

(parameters in the first line of Equation (4)-γDominant) and of the dominant boost hazard (param-

eters in Equation (5)-γBoost) since PrDominantjt and QDjt are always bundled together in the form of

(1− PrDominantjt ) + PrDominantjt QDjt. To separately identify γDominant from γBoost, we need to make

an additional assumption: that is, γDecoy = γDominant, i.e, all else equal, the market-level probabil-

ity of detecting a diamond with n decoys as a dominant is identical to the probability of detecting

a diamond with n dominants as a decoy. Since the decoy–dominant relationships are calibrated at
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the diamond-pair level, the probability of discovering one diamond dominating another is the flip

side of discovering that one is dominated by the other. Thus, parameters quantifying the decoy and

dominant detection probabilities in the marketplace should be the same.9 Based on this symmetric

market-level detection (of decoys and dominants) assumption, and conditional on the dominant

detection parameters (γDominant) being identified, we use the variation of the time to sell domi-

nant only and both decoy and dominant type diamonds (with different numbers of decoys, NDecoy
jt ,

and relative prices, rpjt) to identify the parameters of the dominant boost hazard (i.e., γBoost in

Equation (5)). In our empirical setting, the diamond prices change over days and subsequently

the decoy–dominant structure also changes at the market level. This level of data variation further

empowers the identification of our model parameters.

5 Results

5.1 Main Estimation Results

We report our estimation results in Table 5. Results suggest that the daily-diamond sale haz-

ard varies across the diamond price segments: Diamond-day level sales hazard is highest for the

medium-price segment while it is lowest for the high-price segment. The hazard also decreases

with the diamond’s carat size. For the cut, color, and clarity attributes, we observe an inverse

U-shape relationship, i.e., the daily-diamond sales hazard is the largest for diamonds with moderate

attributes. As mentioned earlier, our unit analysis is each individual diamond; thus the basic sales

hazard would be determined by both potential consumer demand and the supply level of diamonds.

Therefore, an inverse U-shape relationship does not imply that given the same price, a consumer

does not prefer diamonds with better physical attributes. Similarly, price also has an inverse U-

shape effect. The competition related control variables such as the (log-) number of diamonds in

the same and neighboring grades have no significant effect on the daily-diamond sale hazard.

Estimates of daily demand proxies suggest that Google search indexes for diamond-related key-

words are significant proxies for the daily demand needs of consumers. The daily-diamond sale

hazard increases significantly when the Google search indexes on the keywords of “diamond,” “en-
9 Our data limit us from testing whether they are empirically equal. Web browsing information from individual

consumers would potentially help construct measurements to test this. Due to the stringent data requirement, we
leave this exercise for future research.

23



gagement ring,” and the specific name of the retailer are high. However, if the search intensity is

high on the competitor’s name, diamonds’ sales hazards decrease. Another interesting finding is

that when more people are searching for the keywords “diamond ring” and “wedding ring,” the sale

hazards decrease. One reason might be that the retailer is not able to get a premium position in

the search results for those keywords, thus; losing some potential consumers to its competitors. The

daily-diamond sale hazard also differs significantly across weekdays, with Monday and Thursday

being the best days for diamond sales, while Saturday and Sunday are the worst days. One explana-

tion might be that people use weekends to do research on diamonds, possibly go to brick-and-mortar

stores and educate themselves about how to pick up the right diamond, and then place their orders

online during weekdays.
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Table 5: Model Estimates

Variable Estimate Std. Err.

Daily Diamond Sale Hazard

Component Dj

Low-Price Segment (2K-5K) −2.756** 0.092
Medium-Price Segment (5K-10K) −2.722** 0.100
High-Price Segment (10K-20K) −2.832** 0.126

Component Xj :
ln(Carat) −0.402** 0.098
Cut: Poor 0.000
Cut: Good 0.144* 0.069
Cut: Very Good 0.439** 0.068
Cut: Ideal 0.649** 0.069
Cut: Signature Ideal 0.115 0.096
Color: J 0.000
Color: I −0.019 0.022
Color: H 0.062** 0.024
Color: G 0.041 0.027
Color: F 0.035 0.030
Color: E −0.156** 0.033
Color: D −0.192** 0.037
Clarity: SI2 0.000
Clarity: SI1 0.029 0.017
Clarity: VS2 0.073** 0.022
Clarity: VS1 −0.004 0.026
Clarity: VVS2 −0.145** 0.030
Clarity: VVS1 −0.316** 0.035
Clarity: IF −0.628** 0.004
Clarity: FL −0.620* 0.291

Component pjt:
Price (in 1000) 0.068** 0.016
Price Squared −0.004** 0.000

Component Zt:
Google Search: “diamond” 0.217* 0.107
Google Search: “diamond ring” −0.712** 0.064
Google Search: “wedding ring” −0.047 0.057
Google Search: “engagement ring” 0.093** 0.030
Google Search: retailer’s name 0.172** 0.020
Google Search: competitor’s name −0.635** 0.063
Weekday Dummy: Monday 0.000
Weekday Dummy: Tuesday −0.072** 0.014
Weekday Dummy: Wednesday −0.118** 0.014
Weekday Dummy: Thursday −0.032** 0.014
Weekday Dummy: Friday −0.264** 0.015
Weekday Dummy: Saturday −1.828** 0.026
Weekday Dummy: Sunday −1.169** 0.021

Component Wjt:
ln(# Diamonds of the Same Grade) −0.003 0.011

Continued on next page
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Table 5: Model Estimates

Variable Estimate Std. Err.

ln(# Diamond of Neighboring Grades) 0.001 0.006

Market-Level Detection Probability
Low-Price Segment (2K-5K) −1.519** 0.166
Medium-Price Segment (5K-10K) −2.327** 0.142
High-Price Segment (10K-20K) −2.688** 0.832

ln(NDecoys
jt + 1) 0.158** 0.032

I(rpjt < 0)(−rpit) 4.344** 0.924

Dominance Boost Hazard
Low-Price Segment (2K-5K) 0.651** 0.103
Medium-Price Segment (5K-10K) 1.110** 0.117
High-Price Segment (10K-20K) 1.338** 0.693

ln(NDecoys
jt + 1) 0.066** 0.022

I(rpjt < 0)(−rpit) −0.001 0.432

Log-likelihood −257,824.7

BIC 516.390

Note: Estimates with ∗∗ are significant at the 0.05 level.

We now discuss the estimation results regarding the market-level decoy–dominant detection prob-

abilities and the dominant boost hazard, which are the most critical components of our model for

addressing the paper’s central research questions. First, our results suggest that the base market-

level detection probability of a decoy (or dominant) diamond is significantly higher for diamonds in

the low-price segment compared to those in the medium- and high-price segments; however, there

is no statistically significant difference between the latter two segments. One potential explanation

might be that consumers of the low-price ($2K-$5K) segment are usually on tight budgets and are

more likely to spend more time searching for better prices. Thus, they are more likely to have larger

consideration sets, and as a result they are more likely to detect existing decoy–dominant relation-

ships. The positive significant estimate of (log- of) number of decoys/dominants (0.158) shows that

when a diamond has more decoys/dominants, it is relatively easier for the market to detect that

diamond as a dominant/decoy. The positive significant estimate of (the absolute value of) the rela-

tive price index (4.344) shows that the further a decoy (dominant) is priced from the average grade

level price, the higher is the probability of decoy (dominant) detection in the marketplace. We next

calculate the market-level decoy–dominant detection probabilities by using our model estimates. A

detailed summary table about the distribution across the three diamond price segments is presented
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in the upper panel of Table 6. Interestingly, we find that for decoy and dominant diamonds, the

market-level detection probabilities are quite low: 0.29 for the low-, 0.14 for the medium-, and 0.10

for the high-price segments, respectively. These findings show that our real-life scenario with a large

number of diamonds defined on 4Cs and price with many decoys and dominants greatly contrasts

with usual lab settings, in which participants are typically aware of the decoy–dominant relation-

ships by the construction of the experimental design. Along this line, Simonson (2014) stated that

consumers’ detection of decoy–dominant relationships among the existing choice alternatives is a

vital precondition for decoys to increase their dominants’ sale likelihoods and called for a systematic

study that accounts for consumers’ decoy–dominant detection likelihoods. Responding to Simonson

(2014)’s call, our study contributes to the literature by developing a framework to guide marketing

researchers about how to quantify decoy–dominant detection probabilities in real product markets

without any consumer-level search information.

Table 6: The Distribution of Detection Probability and Dominant Boost Hazard
Min Q1 Median Mean Q3 Max

Market-Level Detection Probability
2K-5K 0.20 0.23 0.27 0.29 0.33 0.88
5K-10K 0.10 0.11 0.13 0.14 0.16 0.83
10K-20K 0.07 0.08 0.09 0.10 0.11 0.51

Dominant Boost Hazard
2K-5K 2.00 2.16 2.29 2.30 2.44 3.16
5K-10K 3.18 3.32 3.51 3.52 3.69 4.55
10K-20K 3.99 4.09 4.33 4.38 4.57 5.78

Second, the intercept estimates of our dominant boost hazard component are all positive, con-

firming that, upon dominant detection, the sale hazard would be significantly boosted. This provides

direct evidence of the existence of the DE in a real marketplace. Interestingly, this demand boost

effect is lower for the low-price segment (0.651) than for the medium- (1.110) and high-price (1.338)

segments. The reason may be, as mentioned previously, that consumers with limited budgets search

more intensively for better prices and, therefore, are less responsive to savings gained from a single

dominant once they detect it–i.e., they may be more likely to continue to search. The parameter

estimate for the (log- of) number of decoys is positive and significant (0.066), indicating that having

more decoys would further increase the dominant diamonds’ sales hazards. The relative price index,

on the other hand, turns out to be insignificant. We also calculate the dominant boost effect in
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proportional terms based on the model estimates. We report the distribution of these effects in

the lower panel of Table 6. On average, conditional on detection of a diamond as a dominant, its

sale hazard increases by 130% for the low-, 250% for the medium-, and 340% for the high-price

segments. This finding is in line with Heath et al. (1995), who showed that the DE is stronger

for higher quality products (that correspond to the higher priced diamonds in our case). It is also

consistent with Mourali et al. (2007), who showed that promotion focus (less budget constrained

buyers in our case) would increase the DE.

In summary, our estimation results suggest that it is difficult for consumers to detect the

decoy–dominant relationships in the online diamond marketplace, especially among diamonds in

the medium- and high-price segments. For this reason, it is critical to model the decoy–dominant

detection process in real marketplaces before modeling the sales impact of decoys on dominants. On

the other hand, even though the market-level decoy–dominant detection probabilities are low, once

an alternative is detected as a dominant, its sales hazard increases quite significantly, especially in

the medium- and high-price segments. With this finding, we not only provide strong field evidence

about the existence of the DE, we also respond to Frederick et al. (2014) and Yang and Lynn (2014),

who questioned the practical validity and usefulness of the DE.

5.2 Model Comparison

As discussed earlier, capturing the market-level decoy–dominant detection is critical in testing the

DE in a real product market such as ours. Thus, to obtain accurate inferences, we carefully calibrate

our model by separating the market-level detection from the dominant boost hazard. To test the

importance of this separation, we estimate a benchmark proportional hazard model without such

separation by using the same set of variables from our proposed framework.

Table 7 reports the results of the decoy–dominant hazards for both decoy and dominant dia-

monds10. Without the separation of the market-level detection and the dominant boost hazard,

the estimates have a compound effect on diamonds’ sales hazards. In other words, one may get

significantly biased results using such estimates to quantify the DE.
10We use the same label for dominant diamonds and call the boost in their sales the dominant boost hazard in

Table 7. Meanwhile, for decoy diamonds, we use the label of decoy shrinkage hazard to denote the decrease in their
sales. Further, the daily-diamond hazard parameters are skipped in this table to save space. They are available upon
request.
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Table 7: Benchmark Model Estimates
Variable Estimate Std. Err.

Decoy Shrinkage Hazard
Low-Price Segment (2K-5K) −0.231** 0.022
Medium-Price Segment (5K-10K) −0.046** 0.022
High-Price Segment (10K-20K) −0.085** 0.025
ln(NDominants

jt + 1) −0.032** 0.007

I(rpjt > 0)(rpjt) −1.035** 0.154
Dominant Boost Hazard
Low-Price Segment (2K-5K) 0.162** 0.024
Medium-Price Segment (5K-10K) 0.095** 0.024
High-Price Segment (10K-20K) 0.052** 0.025

ln(NDecoys
jt + 1) 0.070** 0.006

I(rpjt < 0)(−rpjt) 0.979** 0.162

Log-likelihood −257,948.7

Note: Estimates with ** are significant at the 0.05 level.

As seen in Table 7, first of all, we find that the log-likelihood (as well as BIC) for this benchmark

model is much worse than our proposed model, suggesting that explicitly separating the market–

level decoy–dominant detection from the dominant boost hazard better explains data variations

better. Second, as expected, results show that being decoys (dominants) would have a negative

(positive) impact on the sales hazard. However, compared to the dominant boost hazard estimates

from Table 5, the estimates from Table 7 turn out to be much smaller in magnitude. The average

decoy shrinkage and dominant boost hazards across different price segments are reported in Table 8.

Results suggest that, on average, a decoy (dominant) diamond is 25% less (47% more) likely to be

sold. Results also suggest that dominant boost hazards (from this benchmark model) are much

smaller (ranging from 1.35 to 1.59 times) compared to ones from the proposed model (2.30 to 4.38

times). In addition, the dominant boost hazard is largest for the low-price segment and smallest

for the high-price segment, which is directionally opposite of the finding from our proposed model.

Thus, the model comparison demonstrates that not controlling for the market-level detection not

only biases the overall magnitude of the DE but also yields directionally wrong inferences regarding

the DE’s magnitude across different diamond price segments. This finding brings additional support

to Simonson (2014)’s statement about the importance of controlling the decoy–dominant detection

in recovering the true impact of the DE.

Next, we discuss the managerial implications of our study. These findings shed some new light

on the DE’s practical significance and show that it is not simply an experimental artifact.
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Table 8: Decoy/Dominant Hazards from the Benchmark Model
Diamond Type 2K-5K 5K-10K 10K-20K Overall

Decoy Shrinkage Hazard 0.66 0.82 0.81 0.75
Dominant Boost Hazard 1.59 1.42 1.35 1.47

6 Managerial Significance

To demonstrate the substantive implications of our model, we use the estimated parameters and

run policy simulations. First, we quantify the overall profit impact that is contributed by the DE.

Second, we explore opportunities for the retailer to improve its profitability through three easy-to-

implement strategies by that include changing 1) the number of dominants/decoys; 2) the degree

of price dispersion; and 3) the baseline decoy–dominant detection probabilities.

6.1 Profit Impact of the DE

In this subsection, we investigate the retailer’s profit gain or loss from carrying decoy (and dominant)

diamonds. To check the profit impact of the DE, we calculate the retailer’s profit under our proposed

model estimates and compare it with a scenario with no DE; i.e., the parameters of the dominant

boost hazard (γBoost) are turned off. The retailer’s expected profit for a given diamond j at time t

is calculated as:

πjt = Prj(t|.)× (pjt − wjt), (8)

where pjt is the price, and wjt is the wholesale price, which can be easily calculated by subtracting

out the retailer’s mark-up of 18% (given in the retailer’s annual report) from the observed daily

retail prices. Prj(t|.) = 1−exp(−hj(t|.)) is the discrete time hazard, or the probability that diamond

j would be sold in day t, conditional on not being sold until that day. The DE on profit comes from

the differences in the sale probability represented by Prj(t|.) with and without the dominant boost

hazard component.

The results are presented in Table 9. Without the DE, on average, each diamond would con-

tribute $20.49 in gross profit; whereas with the DE the contribution would become $26.07. In

other words, the DE contributes 21.40% of the retailer’s gross profit. The contribution is quite

similar across the three diamond price segments. Based on the financial information of the retailer,
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this percentage increase would translate into $15.4 million per year in absolute terms. This result

shows that even though decoy–dominant detection probabilities are quite low in the online diamond

marketplace, the DE still has a very significant profit impact due to the significant boost in sales

likelihoods upon the dominant detection. Indeed, this profit impact is what really matters the most

from the substantive point of view. This result further mitigates the concerns of Frederick et al.

(2014) and Yang and Lynn (2014) about the practical significance of the DE.

Table 9: The Impact of the DE on Retailer’s Gross Profit
Effect 2K-5K 5K-10K 10K-20K Overall

Avg Daily Revenue Per Diamond W/O the DE 8.39 25.56 39.36 20.49
Avg Daily Revenue Per Diamond 11.00 32.60 49.37 26.07
% Revenue from the DE 21.54% 23.20% 20.80% 21.40%

6.2 Further Profitability from the DE

After showing the significant profit impact of the DE, we next investigate how the retailer can further

improve its profitability by effectively utilizing the DE. We look at three strategies the retailer could

potentially adopt. The first strategy is to list more dominants or decoys. The second strategy is

to manipulate the price dispersion levels while keeping the current dominance structure unchanged.

Borrowing the terminology from the literature, we label the first strategy the frequency strategy

and the second strategy the range strategy. A third strategy the retailer could use is to change the

baseline decoy–dominant detection probabilities in the marketplace. If the retailer wants to increase

detection probabilities, it might simply recommend decoys/dominants to consumers. On the other

hand, by making the search more difficult through modifying its website design, the retailer might

decrease detection probabilities. We call this third strategy the awareness strategy.

For the frequency strategy, we compare the profitability gains or losses when we add a few decoy

only or dominant only diamonds. Results are presented in Table 10. Overall, the retailer can

gain some additional profit when it adds dominant only diamonds. For example, when the retailer

adds one dominant only diamond for each of the diamonds that has at least one dominant in the

current pricing schedule, it can gain an additional 0.61% profit, which translates into an additional

$440,000 yearly profit. Adding a second dominant diamond further increases the retailer’s profit

by 0.51%($368,000). Further, as seen in Table 10, the profit gains are quite similar across different
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diamond price segments. However, unlike adding dominant only diamonds, adding decoy only

diamonds reduces the retailer’s profitability.

Table 10: The Frequency Effect of Dominance Structure on the Retailer’s Gross Profit
Dominance Structure 2K-5K 5K-10K 10K-20K Overall

Add 1 decoy −0.36% −0.23% −0.17% −0.23%
Add 1 dominant 0.51% 0.63% 0.64% 0.61%
Add 1 decoy and 1 dominant 0.16% 0.40% 0.47% 0.38%
Add 2 decoys −0.65% −0.42% −0.31% −0.42%
Add 2 dominants 0.96% 1.16% 1.17% 1.12%
Add 2 decoys and 2 dominants 0.30% 0.74% 0.86% 0.70%

Regarding the range strategy, we change the price dispersion levels for diamonds within the same

grades. To achieve this, we simply enlarge or reduce the relative price measure for each diamond

by a factor. For example, think about a diamond that is priced at $11,000, with a calculated mean

grade price of $10,000. We change the price of this diamond to $10,500 (dispersion factor 0.5),

$10,800 (dispersion factor 0.8), $11,200 (dispersion factor 1.2), and $11,500 (dispersion factor 1.5)

in our simulation studies11. Table 11 reports the results. Overall, the retailer could make additional

profits by reducing the price dispersion compared to the current pricing schedule in the low- and

medium-price segments. This is because, for those diamonds, the market-level detection probability

is relatively large, but the dominant boost hazard is relatively small. On the other hand, the current

pricing scheme for diamonds in the high-price segment seems to be already optimal. By changing

the price dispersion by a factor of 0.5, the retailer could gain an additional 0.38% profit, which

translates into an additional $274,000 yearly profit.

Table 11: The Range Effect of Dominance Structure on the Retailer’s Gross Profit
Dispersion Factor 2K-5K 5K-10K 10K-20K Overall

0.5 1.75% 1.28% −0.83% 0.38%
0.8 0.84% 0.60% −0.23% 0.26%
1.2 −1.04% −0.72% 0.08% −0.41%
1.5 −2.96% −2.05% −0.11% −1.32%

The third (i.e., the awareness) strategy is to change the probability that consumers’ in the

marketplace would detect the existing decoy–dominant structure. We achieve this by changing the

estimated intercepts for the three price segments (see Table 6 – Market-Level Detection Probabil-

ities) and exploring the optimal values for these intercepts. In this exercise, we first generate a
11Note that the mean price level is preserved in this exercise.
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sequence of values between -4.0 and 4.0 with the increments of 0.1; we then use each value in this

sequence as the intercepts, and compute the corresponding expected profits. We compare across

the trial combinations and choose the optimal intercept levels that maximize the expected profit.

Table 12 reports the mean market-level detection probabilities under current awareness levels and

under optimal awareness levels. We also report the additional profit impact when we move towards

the optimal awareness levels. Interestingly, we find that the awareness levels in the medium- and

high-price segments are lower than optimal levels; while for the low-price segment, the retailer should

strongly discourage consumers from detecting the decoy–dominant relationships by making the con-

sumer search for diamonds harder. For the medium-price (high-price) segment, though, the retailer

should increase the detection level from 14% to 29% (10% to 34%). The retailer might achieve this

through personalized product recommendations. If the retailer could manage the awareness levels

optimally, the overall profit impact becomes highly significant: With a 5.4% increase in the gross

profit, the retailer could gain an additional $3.9 million net profit annually.

Table 12: The Effect of the Awareness Strategy on the Retailer’s Gross Profit
Awareness Level 2K-5K 5K-10K 10K-20K Overall

Current Mean Level 28.95% 13.97% 9.90% 20.66%
Optimal Mean Level 6.88% 28.50% 34.11% 18.77%
Profit Increase 7.53% 1.32% 7.10% 5.36%

In summary, our simulation studies show the possibility for the retailer to further increase

profitability by effectively utilizing the DE. We find that the additional profit increase might be

limited when the retailer manipulates the number of dominants and decoys (frequency strategy) and

the price dispersion (range strategy). However, if the retailer can manage the consumers’ awareness

levels optimally (awareness strategy), there is significant room to increase its profit.

7 Conclusions

In this research, we empirically validate the DE by using a unique panel data from a large online

jewelry retailer. We first estimate a proportional hazard model with embedded market-level decoy–

dominant detection probabilities and the sales boost upon dominant detection. Our proposed model

is derived from individual consumer primitives. We model daily sale likelihoods of diamonds as a

function of their 4Cs, prices, daily demand fluctuations, competitive effects from other diamonds,
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and the observed decoy–dominant structure. We find that, in general, the market-level probability

of detecting a diamond as a decoy (dominant) is quite low, especially for the medium- and high-price

diamond segments, but this detection probability increases significantly as the number of dominants

(decoys) that the diamond has increases. More importantly, we find that once a diamond is detected

as a dominant, its sale hazard increases quite significantly (2.3 to 4.4 times). Thus, we empirically

validate the existence of the DE in a real product market and show that the effect is not merely

an experimental artifact as argued in Yang and Lynn (2014). Model comparisons reveal that not

controlling for decoy–dominant detection probabilities yields biased and directionally inconsistent

results regarding the magnitude of the DE.

In addition, we contribute to the substantive issue of measuring the overall profit impact, i.e.,

true managerial significance, of the DE. We quantify the overall profit impact of the DE using

model estimates and find that it contributes about 21.4% of the retailer’s gross profit. Next, we

explore various strategies that the retailer can adopt to improve its profitability through further

utilizing the DE. We test the implications of three strategies: listing more decoys/dominants –

frequency strategy; changing the grade-level price dispersion – range strategy; and changing the

baseline market-level decoy–dominant detection probabilities (for example, through recommending

diamonds to consumers, or making the consumer’s search easier (or harder) by changing the website

design) – awareness strategy. From our simulation studies, we find that the awareness strategy turns

out to be the most effective among the three strategies and brings an additional 5.4% gross profit

to the retailer.

Our study is the first empirical attempt to quantify the widely documented DE in the consumer

behavior literature by using real world data. It is exciting to apply the well-developed context

dependent choice theory to real-life data and empirically quantify the managerial implications.

Several directions might be pursued to extend the understanding of this topic in future research.

One direction is to jointly model demand for and supply of diamonds. We are less concerned with

the diamond suppliers’ optimal pricing decisions in our application since our focus is the DE on

the demand side. Modeling the suppliers’ pricing decisions under the DE might be an avenue for

future studies if such supplier–level information is observed. A second direction is to model the

DE with other context effects, such as compromise (Simonson, 1989) and similarity (Tversky, 1972)

effects. We face significant identification challenges in jointly estimating multiple context effects
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in our setting due to the aggregate nature of our data. Future research could potentially address

this issue when consumer–level search data is available. Finally, a third direction is to model the

competition between our focal retailer and the other online diamond retailers because consumers

might search for diamonds from different online retailers. When data of consumers from the multiple

online retail outlets are available, this direction might be another interesting direction to pursue for

future research.
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Web Appendices

A A Statistical Test for the Source of the Observed Price Variation

In this web appendix, we develop a statistical test to understand whether the observed price vari-

ations in the data can be solely explained by consumer search, or if they are suggestive of both

consumer search and the DE.

Burdett and Judd (1983) proved that when consumers search for price, even for homogeneous

products, price variations can arise in equilibrium. The intuition is that because of consumer search

cost, consumers may not discover all options; and as a result, high-priced options may be purchased

by some consumers (i.e., these options may still have positive sale likelihoods). Further, in the

mixed-strategy pricing equilibrium, each observed price point generates the same expected profit.

Hong and Shum (2006) used this idea of mixed-strategy pricing equilibrium to recover consumer

search-cost distribution purely from observed price variations for textbooks–a typical homogeneous

good. We borrow this idea and use it to conduct our statistical test. For diamonds with identical

4Cs (i.e., the same grade), denoted by the set J , we observe two types of price variations: 1) across

diamonds in the set J on day t, and 2) within the same diamond (identified by SKU) over time. We

use pjt to denote the price of diamond j on day t. We use Phj(t|pjt) to denote the sales response

function conditional on price. Because the retailer has a fixed margin (1− r = 18%) in our market

setting, the wholesale price of suppliers becomes wjt = r× pjt. We finally denote the marginal cost

for suppliers as cjt.

If there is no DE in the sales response function Phj(t|pjt) (i.e., the observed price variation

is driven solely by consumer search), for a supplier, setting prices either through maximizing the

total expected profit from a set of diamonds, or through maximizing the expected profit for each

individual diamond (in the corresponding set) will yield the same set of prices and ultimately the

same total profit. However, when the DE exists along with consumer search, this no longer holds

since decoys boost their dominants’ demand, i.e., decoys bring positive externality to the profitability

of their dominants. Therefore, we predict the expected profit from dominants to be higher than

that of decoys. In other words, if the DE exists together with consumer search, each price point

in the support of the observed price distribution would no longer yield the same expected profit,

i.e., dominants will have higher expected profits compared to decoys. The supplier’s expected profit
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from diamond j on day t is:

πjt = (r × pjt − cjt)Phj(t|pjt). (A.1)

Under the assumption of no DE, assume that suppliers have priced optimally, in which case, the

following first order condition should hold: ∂πjt
∂pjt

= 0. Note that this optimality condition holds for

any price observed in the marketplace, because under mixed pricing equilibrium, each price point

generates the (same) optimal profit. From this optimality condition, we can invert the following

marginal cost:

cjt = r × pjt(1 +
1

ηjt
), (A.2)

where ηjt = [
∂Phj(t|pjt)

∂pjt
][

pjt
Phj(t|pjt) ] is the price elasticity at price pjt.

However, when there is DE, this relationship no longer holds, because decoys serve as “loss-

leaders” and generate less profit than their dominants. Consequently, for high-priced decoys, true

price elasticities will be larger in absolute values (more elastic) compared to their low-priced dom-

inants. Therefore, using Equation (A.2) leads us to a relationship where the calculated cost cjt

increases with the observed price pjt for identical diamonds. We use this idea in our proposed

statistical tests. In the first test (labeled as Test I), we assume that the suppliers’ marginal costs

of diamonds with identical attributes are the same, i.e, cjt = c,∀j ∈ J, ∀t. It might be a reasonable

assumption in this particular industry, because diamonds are supplied globally by a few dominant

manufacturers. Further, this assumption was also used by both Burdett and Judd (1983) and Hong

and Shum (2006). To conduct our test, we proceed with the following steps:

1. Use a proportional hazard model to fit the sales response function Phj(t|pjt) with polynomials

of pjt (we use linear, quadratic, and cubic forms), diamond characteristics, days on market,

and day fixed effects to control for focal and over-time demand effects.

2. Invert the implied cost ĉjt using Equation (A.2) for each observed price point under our null

hypothesis that observed price variation is driven by consumer search only.

3. Regress ĉjt over the relative price index rpjt = (pjt − pJt)/pJt (pJt is the average price of

diamond j on day t, and other control variables such as diamond characteristics and day fixed

effects.)
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If the estimated coefficient for rpjt is insignificant, then the test favors the null hypothesis that

price dispersion could be explained based on consumer search alone; if the coefficient is positive

and significant, we would have the statistical support to reject the null hypothesis, and the results

would be consistent with the price variations being driven by the DE along with consumer search.

In our second test (labeled as Test II), we relax the cost assumption (cjt = c,∀j ∈ J, ∀t) from

Test I. Instead, we impose the following assumption: For the same diamond j, the cost for the

supplier would be the same over time, i.e., cjt = c,∀t. In other words, diamonds in the same grade

might have different costs, but this cost is time-invariant. We use the within-diamond over time

price variation to test our hypothesis. The test follows the same steps as in Test I, except that in

Step 3, we run the regressions using diamond-level (i.e., SKU-leve) fixed effects as controls and test

whether the coefficient for rpjt is significant. We repeat Test I and II for each of the three diamond

price segments (low-, medium-, and high-price) and report the results in Table A1. Both Test I

and II reject the null hypothesis (i.e., the price variation arises solely from consumer search) and

support the DE as coexisting with consumer search. Furthermore, consistent with our proposed

model predictions (see Estimation Results section in the manuscript), the effects are stronger (i.e.,

coefficients for rpjt are larger) for medium-, and high-price segments.

Table A1: Test of the Source of the Observed Price Variation

Variable 2K-5K 5K-10K 10K-20K

Test I
Controls 4Cs, day fixed effects, rpjt
rpjt 1.314∗∗(0.001) 3.163∗∗(0.004) 6.073∗∗(0.007)
Adj. R-squared 0.960 0.965 0.965

Test II
Controls diamond fixed effects rpjt
rpjt 2.349∗∗(0.024) 2.965∗∗(0.051) 4.440∗∗(0.143)
Adj. R-squared 0.960 0.963 0.946

Note: Estimates with ∗∗ are significant at the 0.05 level. Dependent variable—estimated cost—is in
1000 dollars.
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B Derivation of Diamond-Level Sales Hazard from Consumer Primitives

In this web appendix, we derive our diamond-level proportional hazard model (Equation 1 in the

manuscript) from consumer primitives including consumer arrival process, search, consideration set

formation and conditional choice probabilities. We further discuss 1) how we embed the DE in

consumers’ conditional choice probabilities, and 2) how our specification serves as a test for the DE.

B.1 Individual Primitives and Continuous Time Diamond Hazard

We assume that potential diamond consumers arrive at random times to the retailer’s website. In

each specific time τ (can be a millisecond), we assume that at most one consumer would be making a

diamond purchase decision. A representative consumer i, arriving at time τi, searches the retailer’s

website to form her consideration set and then decides whether to purchase one of the diamonds

from that set that maximizes her utility or not to purchase any diamonds. In terms of search,

we assume independence across diamonds—that is, the probability that a particular diamond is

included is independent of any other diamonds being included or not.1 We denote the consumer i’s

consideration set as Mi, and the super set containing all the possible consideration sets as M.

We define the conditional choice probability of consumer i choosing a particular diamond j

from her consideration set , given j has not been sold before τi, as si(j|Mi) (to be discussed in the

following subsection in detail). The expected sales probability of diamond j at time τi is thus the

sum of the choice probabilities over all possible consideration sets:

ωj(τi) =
∑
Mi∈M

Pr(Mi)× si(j|Mi). (B.1)

Note that this consumer and diamond specific choice probability is equal to the sales hazard

of diamond j at time τi. This is the case because it is the conditional probability that diamond j

will be sold at τi conditional on it not being sold until τi, and the consumer i is the only consumer

deciding whether j would be purchased at this particular time.
1Note that this assumption holds under simultaneous but not sequential search. Researchers have documented

empirical evidence in support of both sequential (Zhang et al., 2017) and simultaneous search in the literature (De los
Santos et al., 2012; Honka and Chintagunta, 2016).
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B.2 Embedding the DE into the Continuous Time Diamond Hazard

For a specific diamond j, we can classify diamonds into three mutually exclusive and collectively

exhaustive types based on their relationships to j. The set of Coj contains diamonds that are neither

dominants nor decoys to j; the set CDominantsj contains all diamonds that are dominating j; and

finally, the set CDecoysj represent the collection of j’s decoys. Denote as Mo
ij the set of diamonds

from Coj that are in consumer i’s consideration set, and similarly MDominants
ij and MDecoys

ij the sets

of diamonds (in i’s consideration set) that are from j’s dominants set (CDominantsj ) and decoys set

(CDecoysj ). Denote Mo
j , MDominants

j , and MDecoys
j as the super sets ofMo

ij ,M
Dominants
ij andMDecoys

ij ,

respectively. We now can express consumer i’s consideration set Mi as a combination of j, Mo
ij ,

MDominants
ij and MDecoys

ij , and define the choice probability si(j|Mi) accordingly:2

si(j|Mi) =



0, if j /∈Mi

si(j|j ∪Mo
ij), if j ∈Mi & MDominants

ij = ∅ & MDecoys
ij = ∅

0, if j ∈Mi & MDominants
ij 6= ∅

si(j|j ∪Mo
ij ∪M

Decoys
ij ), if j ∈Mi & MDecoys

ij 6= ∅ & MDominants
ij = ∅.

(B.2)

In the above equation, j has a choice probability of zero in the first case simply because it is not

in the consideration set. The choice probability is also zero in the third case, because we assume

that consumers are rational, and once a dominant is included in the choice set, the inferior decoy

diamond j will never be purchased. Also, notice that in the last case, the consumer will only choose

an option from the subset, not from MDecoys
ij , because diamonds in MDecoys

ij are inferior to option

j and a rational consumer would not buy those decoys. In other words, the effective choice set

becomes the same as the second case. If there is no DE, si(j|j ∪Mo
ij) = si(j|j ∪Mo

ij ∪M
Decoys
ij ) ;

however, if there is DE, we would expect the presence of diamonds from MDecoys
ij to increase the

attractiveness and thus the choice probability of diamond j. To capture that demand boost due to

the DE, we denote the relationship between the two conditional choice probabilities as follows.

si(j|j ∪Mo
ij ∪M

Decoys
ij ) = si(j|j ∪Mo

ij)× qi(j,Mo
ij ,M

Decoys
ij ), (B.3)

where qi(j,Mo
ij ,M

Decoys
ij ) is a scalar that affects the choice probability of option j, and is a function

2The functional form of si(j|Mi) could be very general. Since we do not have individual-level data, we do not
specify its functional form here. A natural choice could be the multinomial logit model.
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of dominance relationships in the choice set. Note that, qi(j,Mo
ij ,M

Decoys
ij ) = 1 if there is no DE;

qi(j,M
o
ij ,M

Decoys
ij ) > 1 if there is DE. Given Equations (B.2) and (B.3), we next aggregate the choice

probability over the possible consideration sets to derive the continuous time diamond hazard from

Equation (B.1) as follows:

ωj(τi) =
∑

Mi∈M
Pr(Mi)× si(j|Mi)

=
∑

Mo
ij∈Mo

j

Pr(Mi = j ∪Mo
ij)si(j|j ∪Mo

ij)+

∑
Mo

ij∈Mo
j

∑
MDecoys

ij ∈MDecoys
j

Pr(Mi = j ∪Mo
ij ∪M

Decoys
ij )si(j|j ∪Mo

ij ∪M
Decoys
ij )

=
∑

Mo
ij∈Mo

j

Pr(Mi = j ∪Mo
ij)si(j|j ∪Mo

ij)+

∑
Mo

ij∈Mo
j

∑
MDecoys

ij ∈MDecoys
j

Pr(Mi = j ∪Mo
ij ∪M

Decoys
ij )si(j|j ∪Mo

ij)qi(j,M
o
ij ,M

Decoys
ij )

=Pr(j ∈Mi)Pr(M
Decoys
ij = ∅)Pr(MDominants

ij = ∅)
∑

Mo
ij∈Mo

j

Pr(Mo
ij ∈Mi)si(j|j ∪Mo

ij)+

Pr(j ∈Mi)Pr(M
Dominants
ij = ∅)

∑
Mo

ij∈Mo
j

Pr(Mo
ij ∈Mi)si(j|j ∪Mo

ij)×

∑
MDecoys

ij ∈MDecoys
j ,MDecoys

ij 6=∅

Pr(MDecoys
ij ∈Mi)qi(j,M

o
ij ,M

Decoys
ij )

. (B.4)

In the above derivation, we first use Equation (B.2) (i.e., two non-zero choice probabilities on the

second and fourth lines) to obtain the second line of Equation (B.4). Next, we use Equation B.3 to

move from the second to the third line of Equation (B.4). We next use the independence assumption

to move from the third to the fourth line of Equation (B.4). Next, we define the following:

si(j|j,Mo
j) =

∑
Mo

ij∈Mo
j

Pr(Mo
ij ∈Mi)si(j|j ∪Mo

ij). (B.5)

Given si(j|j,Mo
j) from Equation (B.5), we then define the following:

qi(j,Mo
j ,M

Decoys
j ) =

∑
Mo

ij∈Mo
j

Pr(Mo
ij ∈Mi)si(j|j ∪Mo

ij)qi(j,M
o
ij ,M

Decoys
j )/si(j|j,Mo

j), (B.6)

where qi(j|Mo
ij ,M

Decoys
j ) =

∑
MDecoys

ij ∈MDecoys
j ,MDecoys

ij 6=∅ Pr(M
Decoys
ij ∈Mi)qi(j,M

o
ij ,M

Decoys
ij )

/Pr(MDecoys
ij 6= ∅). Plugging si(j|j,Mo

j) and qi(j,Mo
j ,M

Decoys
j ) from Equation (B.5) and (B.6) into

(B.4), and rearranging the terms, we can simplify Equation (B.4) as follows:
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ωj(τi) =
∑

Mi∈M
Pr(Mi)× si(j|Mi)

=Pr(j ∈Mi)Pr(M
Decoys
ij = ∅)Pr(MDominants

ij = ∅)si(j|j,Mo
j)+

Pr(j ∈Mi)Pr(M
Decoys
ij 6= ∅)Pr(MDominants

ij = ∅)si(j|j,Mo
j)qi(j,Mo

j ,M
Decoys
j )

=Pr(j ∈Mi)si(j|j,Mo
j)Pr(MDominants

ij = ∅)×[
Pr(MDecoys

ij = ∅) + Pr(MDecoys
ij 6= ∅)qi(j,Mo

j ,M
Decoys
j )

]
.

(B.7)

Note that qi(j,Mo
j ,M

Decoys
j ) is the average of qi(j,Mo

j ,M
Decoys
j ) weighted by the probability

of having MDecoys
ij ; and qi(j|Mo

ij ,M
Decoys
j ) is the average of qi(j|Mo

ij ,M
Decoys
j ) weighted by the

probability of havingMo
ij . Thus, the final qi(j,M

o
ij ,M

Decoys
j ) is the average of all the qi(j|.) weighted

by the probability of all the possible combinations of MDecoys
ij and Mo

ij .

Equation (B.7) tells us that the aggregate sales hazard in the continuous time can be decomposed

to the sum of two components: 1) the probability that no decoy-dominant relationships are included

in the consideration set times the aggregate choice probability over all no dominants–no decoys sets

(i.e., the baseline choice probability); and 2) the probability that a diamond’s decoys but not

dominants are included in the consideration set times the baseline choice probability multiplied by

an additional aggregate term q that depends on the decoy-dominant structure. From the DE theory,

we know that for each specific consideration set, qi(j,Mo
ij ,M

Decoys
j ) ≥ 1 , i.e., it cannot be the case

that adding dominated options to the choice set would reduce the choice share of a dominant. When

this q function aggregates to the market level, it is a weighted average of all the consideration set-

level qs. Therefore, the aggregate qi(j,Mo
ij ,M

Decoys
j ) ≥ 1. As qi(j,Mo

ij ,M
Decoys
j ) ≥ 1 captures the

potential DE at the individual-choice level, testing whether qi(j,Mo
ij ,M

Decoys
j ) ≥ 1 equals testing

whether on average the DE exists in individual choices, i.e., whether Eqi(j,Mo
ij ,M

Decoys
j ) ≥ 1.

B.3 Daily Diamond Sales Hazard

We now derive the aggregate-level sales hazard for diamond j at discrete time, i.e., day t. We

assume nt potential consumers arrive randomly during day t, and each consumer can be represented

by consumer i. By definition in survival analysis, we know the survival function for diamond j at

the end of day t, thus Sj(t) is defined as:

Sj(t) = e−Hj(t), (B.8)
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where Hj(t) =
∫ t
0 ωj(τi)dτ is the cumulative hazard function.

We use Phj(t) to denote the hazard in the discrete time for diamond j on day t:

Phj(t) =
Sj(t− 1)− Sj(t)

Sj(t− 1)

= 1− e−(Hj(t)−Hj(t−1))

= 1− e−hj(t),

(B.9)

where hj(t) = ntωj(τi), and the corresponding survival function is Sj(t) = Πt
k=1e

−hj(k).

Functional Form Specification

Based on our derivation of ωj(τi) in Equation (B.7), we now can write hj(t) in Equation (B.9) as
follows:

hj(t) =ntωj(τi)

=ntPr(j ∈Mi)si(j|j,Mo
j)Pr(M

Dominants
ij = ∅)×[

Pr(MDecoys
ij = ∅) + Pr(MDecoys

ij 6= ∅)qi(j,Mo
j ,M

Decoys
j )

]
.

(B.10)

Note that, in the above equation,ntPr(j ∈ Mi)si(j|j,Mo
j) component represents the daily-

diamond hazard for diamond j. In our functional specification, we model ntPr(j ∈ Mi)si(j|j,Mo
j)

as the daily-diamond hazard (ψj(.)) as a function of diamond price segments, 4Cs, price, daily

demand proxies and competition from other diamonds. Note also that, in the above equation,

Pr(MDominants
ij = ∅)[Pr(MDecoys

ij = ∅) + Pr(MDecoys
ij 6= ∅)qi(j,Mo

j ,M
Decoys
j )] component repre-

sents the probability of diamond dominance detection and the boost in sales upon dominant detec-

tion. In our functional specification, we use the DE hazard (φj(.)) to control for this component.

Therefore, we operationalize the hazard hj(t) at discrete time in Equation(B.10) as follows:

hj(t) = ψj(.)φ(.). (B.11)

Note that Equation (B.11) above is the same as Equation (1) in our manuscript. This completes

our derivation of the diamond-specific proportional hazard from the individual consumer primitives.
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